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Distributed representation of discrete sequential
vocalization in the Bengalese finch (Lonchura striata var.
domestica)
Takuya Koumura and Kazuo Okanoya

Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan

ABSTRACT
Bengalese finches learn and produce sequential vocalizations with
a complex song syntax. Various models for the song syntax have
been proposed, each of which focuses on several different char-
acteristics of the syntax. However, methods to model these multi-
ple characteristics in a single framework have not been well
studied. Here, we propose a model that explains three prominent
characteristics of the song syntax in Bengalese finches in a single
unified framework. First, the generation of a vocal element
depends on multiple preceding elements. Second, a song often
contains repetitions of a single element type. Third, a song often
begins with a special sequence called an introductory sequence. In
this study, an effective way was sought to model these three
characteristics in the framework of a conditional probability in
symbol sequences. The model takes a distributed representation
of a preceding sequence as an input, which is defined by a set of
decaying values activated when the vocal elements are generated.
The proposed model is shown to outperform conventional syntax
models in predicting sequences in novel songs. The results sug-
gest that the song syntax of the bird’s brain might also be repre-
sented by decaying activities of populations of neurons.
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Introduction

Some animal species, including humans, produce a rapid sequence of vocal elements,
which is referred to as a sequential vocalization (Doupe and Kuhl 1999; Kershenbaum
et al. 2014). In a sequential vocalization, vocal elements are usually produced with some
complex patterns. Finding a good model of such patterns is essential to better under-
stand the functions and mechanisms of sequential vocalization.

Songbirds, especially Bengalese finches, provide powerful behavioural and neural
models of sequential vocalization (Okanoya 2004a, 2004b). A song in the Bengalese
finch is a sequence of vocal elements called notes (Figure 1(a)), and the patterns of note
sequences are called song syntaxes. Birdsong has long been modelled by a probabilistic
symbol sequence, in which each symbol corresponds to a single note category (Okanoya
2004b) (Figure 1(b)). A song syntax is modelled by conditional probabilities of symbols
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given the preceding symbol sequences. Previous studies have found several character-
istics of the song syntax in Bengalese finches, such as (i) long-range dependencies, (ii)
repetitions and (iii) introductory sequences (intros). (i) It is known that the conditional
probability of a note category depends on more than one preceding note (Katahira et al.
2011; Yamashita et al. 2011). (ii) A song often contains repetitions of a single note
category, with the length of a repetition varying probabilistically (Jin and Kozhevnikov
2011; Wittenbach et al. 2015). (iii) A song usually starts with a sequence with distinct
patterns, an intro (Rajan and Doupe 2013). In most birds, an intro is a repetition.
Although each of these characteristics has been investigated in multiple independent
studies, they have not been modelled very well in a single unified framework.

In this study, we propose a model of song syntax that explains the above three
characteristics in a single framework. First, we sought an effective way to model each of
the three characteristics in the conventional framework of probabilistic symbol
sequences. Two models were made for each of the three characteristics, and the most
effective model among them in terms of the likelihood for novel songs was selected. The
selected model could explain novel songs effectively, but the framework of a symbolic
model itself may not be biologically relevant considering that neural activities that
control and represent animal behaviours are not symbolic in nature.

Thus, in the second step of the study, based on the most effective symbolic model, we
propose a new model of a song syntax that can predict note categories in novel songs
and at the same time is more biologically relevant. The new model is based on
conditional probabilities of note categories, as in the symbolic model, but the input is
not a symbol sequence but a distributed note representation, that is, a fixed length
vector that encodes preceding note sequences. In contrast to the symbolic model, we
call the proposed model distributed model. By evaluating the distributed model in
terms of the likelihood for a novel song, we demonstrated the behavioural relevance of
the distributed model. Because the distributed representation was calculated from
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Figure 1. A song in a Bengalese finch.
(a) An example of an excerpt of a song. Notes at the beginning of the song are shown. The horizontal and the vertical
axes show the time and the frequency, respectively. The darker area in the spectrogram indicates a larger power at
a particular time and frequency bin. Note categories are shown by the coloured alphabets to the bottom of the
spectrogram. A song consists of multiple notes with distinct spectro-temporal patterns. The notes are classified based
on the spectro-temporal patterns into a limited number of categories. (b) Examples of note sequences at the beginning
of songs. Coloured alphabets indicate the note categories, and the grey hyphens indicate the unclassifiable notes. The
dots at the right indicate that the song continues. Although individual sequences differ from one another, most songs
contain subsequences ‘AABCDDD’ and repetitions of notes ‘E’ and ‘F’. Also, the songs appear to begin with the
repetition of ‘A’ followed by ‘BCDD’ followed by the repetition of ‘E’ followed by the repetition of ‘F’.
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decaying activities of units, each of which encodes a single note category, Bengalese
finches might also represent their songs with decaying activities of neural populations.

Materials and methods

Ethics statement

The experimental procedures were approved by the Institutional Animal Care and Use
Committee of the University of Tokyo.

Subjects

Songs in 14 birds were analysed for syntax modelling. All birds were male and older
than 120 days post-hatch. Light on and off intervals were 14 h and 10 h, respectively.
Food and water were given ad libitum before, after, and during song recording.

Song recording

A few of the songs were recorded in the previous study (Koumura and Okanoya 2016).
A bird was put in a sound attenuation chamber. After a habituation period of at least
two days to the recording environment, sound was recorded for three or four con-
secutive days using a microphone (PRO 35, Audio-Technica Corporation, Japan), an
amplifier (MicTube Duo, Alesis, United States), and an audio interface (OCTA-
CAPTURE, Roland, Japan) at 16 bits with a sampling rate of 32 kHz. Light on and
off (on for 14 h and off for 10 h, respectively) were controlled with an LED light.

Song annotation

Songs in each bird were individually analysed, because the songs in Bengalese finches
are largely different among birds. Notes were detected and classified by supervised
machine learning (Koumura and Okanoya 2016). A small number of manually anno-
tated songs were used to train the annotator, which in turn automatically annotated the
rest of the songs. All annotations were visually inspected and, if needed, corrected
manually. Unclassifiable notes, such as ones that did not appear to belong to any
categories or had an intermediate appearance of more than one category, were labelled
as ‘unclassifiable’. Categories with notes less than 1% of the total number of notes in the
songs were labelled as unclassifiable as well.

Note sequences, separated by non-singing calls, with more than seven notes and less
than 300-ms silence between notes were extracted as songs. Data in the birds with
unclassifiable notes constituting more than 1% of the total number of notes in the songs
were discarded. As a result, the data in two birds were discarded.

Symbolic syntax model

The first step of this study was testing an effective way to model symbolic song syntax.
The following were tested: (i) whether the length of the dependency is one or multiple

358 T. KOUMURA AND K. OKANOYA



(FO vs. VO models); (ii) whether to model repetitions with a Markov process or with
an empirical distribution (MR vs. ER models); (iii) whether to assign different prob-
abilities to intros from non-intros (I vs. NI models). The total number of models to be
tested was 23 = 8 (FO-ER-I, FO-ER-NI, FO-MR-I, FO-MR-NI, VO-ER-I, VO-ER-NI,
VO-MR-I and VO-MR-NI). A Markov process was employed as a general framework
for the models. In a Markov process, a symbol sequence is modelled by conditional
probabilities of symbols depending on the preceding sequence with a finite length.
Additionally, in the ER and I models, repetitions and intros were considered as special
cases. Here, we describe a brief definition of the models. The detailed algorithms for
model construction and hyperparameter setting are in Appendix 1.

The VO-MR-NI model is an ordinary variable-order Markov process. The model is
defined by a set of symbols S, a conditional probability of a symbol x∈S given
a sequence X, P(x|X), and a set of given sequences G. G consists of an empty sequence
ε (i.e. the sequence of length 0), symbols in S (i.e. sequences of length 1) and sequences
with multiple lengths. The sequences with multiple length X are included to G if P(x|X)
is significantly different from P(x|X’) for any x in S, where X’ is the longest suffix of
X (e.g. if X = ABC, X’ = BC). P(x|X) is considered to be different from P(x|X’) if and
only if the likelihood ratio P(x|X)/P(x|X’) is larger than a certain threshold (that is,
a hyperparameter). In this study, the maximum length of the sequences in G was 32 for
avoiding too large computational costs. If the length of X is 0, P(x|X) is defined by the
occurrence probability of the note x, P(x). P(x|X) is calculated by the occurrence
number of the sequence Xx divided by the number of the sequence X in all songs.

The FO-MR-NI model is an ordinary first-order Markov process. It is similar to the
VO-MR-NI model except that in the FO-MR-NI model G only contains sequences with
lengths of less than 2 (i.e. ε and symbols in S).

In the I models, the probability of a symbol given intros differs from the probability
given non-intros. Specifically, in the VO-MR-I and FO-MR-I models, G includes iX,
where prefix i indicates that X is an intro. X is defined as an intro if and only if the first
note in X is the first note of the song.

The ER-NI models consist of S, P(x|X), G, and the probability of repetition length for
each note category, Px(l), where l denotes the repetition length. Px(l) is calculated by the
smoothed empirical distribution of the repetition length. To make repetitions of any
length possible, smoothing was done by adding an exponential distribution.

PxðlÞ ¼ P0
xðlÞ þ Axαl�1

x

1þ Ax
1�αx

where P’x(l) denotes the empirical distribution of the repetition length, Ax > 0 and 0 <
αx < 1 are the hyperparameters for smoothing. A symbol without repetition is regarded
as l = 1. In the ER-I models, instead of Px(l), the probability of repetition length of
intros PIx(l) and that of non-intros PNIx(l) are calculated. A repetition is considered an
intro if and only if the first note in the repetition is the first note of the song.

Distributed syntax model

The distributed syntax model calculates conditional probabilities of note categories
from the distributed representation of preceding sequences. The distributed
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representation was defined by a sum of decaying one-hot vectors (with ones at
particular note categories) at note onset. Let r(t) be a distributed representation at
time t, which is a vector of size |S|, and let each of its elements be rx(t), where x is a note
category.

rxðtÞ ¼
X
tx

0 < t

ð� t � t
0
x

τx
Þ

where tx’ is the onset times of the notes with category x, and τx is the time constant of
the decay for the note category x. Considering intros, at the beginning of the song rx(0)
= 0 for all x.

The distributed representation is a given variable of the conditional probability y.Mapping
from r(x) to the conditional probability is calculated by an artificial neural network f.

a

b c

Figure 2. Symbolic syntax models.
Symbolic syntax models in an example of a bird. (a) probabilities of symbols ‘x’ (horizontal axes) given preceding
symbol sequences ‘X’ shown in the left of each panel. The probabilities are shown by the length of the horizontal bars.
The name of the condition is shown at the top of each panel. The symbol “i” in an I model indicates an intro, and the
symbol “ε” indicates the empty sequence. The conditional probabilities smaller than 0.03 are not shown for better
visualization. In the FO models, the length of the given sequences is limited to 1, but not in the VO models. (b)
Probabilities of repetition length in the ER-NI models. (c) Probabilities of repetition length in the ER-I models. In the ER-I
models, the repetition lengths of intros and non-intros are modelled by different probabilities. Repetition length 1
indicates no repetition. In the ER models, repetitions are reduced to single symbols before applying the conditional
probabilities, and the length of the repetition is modelled by an empirical distribution.
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y ¼ f ðrÞ

A neural network with a single hidden layer was used with a softmax function as f.
When a conditional probability of a note category was calculated, the current time t was
set to the onset time of the target note. The detailed description of the training
procedure for the artificial neural network is in Appendix 2.

Model evaluation

The eight symbolic models and the distributed model were evaluated by the average
likelihood for the validation data (see Appendix 3 for the detailed definition of the
average likelihood of each model). Songs were randomly divided into four groups for
four-fold cross-validation. Models were trained with songs in the three groups (training
data) and evaluated with the remaining group (validation data). This process was
repeated for every four combinations of training and validation data.
Hyperparameters were optimized to maximize the likelihood in four-fold cross-
validation within the training data by dividing the training data further into four
groups. It was impossible to conduct leave-one-bird-out cross-validation, because the
note categories and the song syntax were largely different among individual birds.

Statistical test

The likelihoods of the models were compared within birds by Wilcoxon signed rank
test with Bonferroni correction. The corrected p values are shown in the results section.
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Figure 3. Likelihoods for novel songs.
The average likelihood for novel songs in each model type. The average likelihoods in a single bird (grey circles) are
connected with grey dashed lines. The box-and-whisker plots show minimums, maximums and quartiles, including all
data points. Means among all birds are shown as black crosses. The likelihoods in the VO-MR-I model were larger than
in other symbolic models for all birds, and the likelihoods in the distributed model were larger than those of all
symbolic models for all birds.
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Results

Recorded songs

Songs in 14 birds were recorded. Songs of each bird were recorded for three or four
days. Data in two birds with unclassifiable notes constituting more than 1% of the total
notes were discarded. The data in the remaining 12 birds were analysed. The total
duration of the songs per day was 44.5 ± 22.3 min (all numbers in this paper with ±
symbols represent mean ± standard deviation). The duration of a song was 7.5 ± 2.4
s. The total number of notes per day and the number of note categories in a bird were
20,701.8 ± 10,551.9 and 7.8 ± 3.6, respectively. Songs in each bird were analysed
independently, because songs were largely different among birds.
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Figure 4. Distributed syntax model.
An example of the activities in the distributed syntax model for an excerpt of a song. From top to bottom: predicted
probabilities of the next note categories, distributed representation of each note category, and the true note categories.
The horizontal axis indicates the time. At the beginning of the song, the values of the representation are 0 for all
categories. At the onset of a note, the value for the corresponding unit increases by 1 and decays exponentially. The
probabilities of the note categories are calculated using the values obtained just before the note onset, indicated by
the dots in the distributed representation.
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Figure 5. Schematic diagrams of the symbolic and distributed models.
A symbolic syntax model takes a symbol sequence as an input and maps it to the probability of the next symbol using
a graph or a table of conditional probabilities. In contrast, the distributed model takes a symbol sequence with onset
time as an input and represents it with decaying unit activities. The representation is mapped to the probability of the
next symbol using a non-linear classifier. Symbolic models have the advantage of being easily and intuitively under-
stood; whereas, the distributed model has the advantage of being directly comparable with neural activities. Both
models can be evaluated with observed note sequences using likelihoods, because both of them are generative models
of note sequences.
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Symbolic syntax models

In the first step of this study, we sought an effective way of symbolically modelling song
syntax, using conditional probabilities of symbols given preceding symbol sequences.
We focused on the three characteristics of songs in Bengalese finches: (i) long depen-
dency, (ii) repetitions and (iii) intros. The simplest symbolic model using conditional
probabilities is a first-order Markov process, in which a probability of a symbol depends
only on a preceding symbol. Because of its simplicity, a first-order Markov process has
been assumed in many physiological and computational studies, despite that the
dependence on only one preceding note has been suggested to be insufficient for
songs in Bengalese finches (Katahira et al. 2011; Yamashita et al. 2011). Simply making
the dependency longer results in an exponential increase of the total number of
sequence patterns the model has to remember, making the model impractical both
biologically and computationally. In this study, instead of comparing Markov processes
with multiple orders, we compared a first-order Markov process and a variable-order
Markov process, in which the length of a given sequence is adaptively determined for
each sequence (Ron et al. 1996; Bejerano and Yona 2001; Markowitz et al. 2013). When
a note sequence is generated by a variable-order Markov process, each note is sampled
from a conditional probability given the preceding symbol sequence. In this process, the
conditional probability with the longest given sequence is chosen among those defined
in the model. For example, if a model defines conditional probabilities of a symbol
given preceding sequences ‘A’, ‘C’ and ‘BC’, the symbol following ‘ABC’ is sampled
from the conditional probability given ‘BC’ but not that given ‘C’, because ‘BC’ is longer
than ‘C’. When building a model, a conditional probability is defined in the model if the
probability is substantially different from that given a shorter sequence. For example,
a model defines the conditional probability given ‘BC’ if it is substantially different from
the conditional probability given ‘C’. In contrast, the model does not define the
conditional probability given ‘AC’ if it is similar to the conditional probability given
‘C’. In this way, a variable-order Markov process efficiently models long dependency by
only remembering conditional probabilities that are significantly different from those
given shorter sequences. We call these models a first-order (FO) model and a variable-
order (VO) model, respectively.

Another important characteristic is a repetition. Some of the previous studies have
completely ignored repetitions and replaced them with a single symbol or analysed only
the first note in the repetition irrespective of the repetition length (Bouchard and
Brainard 2013; Sasahara et al. 2006). In another study, repetitions were modelled with
Poisson distributions and non-repetitions with the first-order Markov process, resulting
in the model generating similar sequences to those of the actual songs (Kershenbaum
et al. 2014). On the other hand, repetitions can be generated in the same neural circuit
as non-repetitions if auditory feedback is taken into account, suggesting the same
generation mechanism for repetitions and non-repetitions (Wittenbach et al. 2015).
In this study, we compared a model that makes a distinction between repetitions and
non-repetitions and a model that does not. In the former model, a repetition is reduced
to a symbol for the Markov process, and the probability of the repetition length is
modelled by an empirical distribution. In the latter model, notes in a repetition are
modelled by a Markov process as with the non-repetitions. We call these models an
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empirical repetition (ER) and a Markov repetition (MR) models, respectively. In both
models, repetitions appearing in intro-like sequences are modelled in the same way as
those in non-intro sequences.

The third characteristic we focused on is an intro. Most studies simply exclude intros
without detailed description of how they are defined. This may be because it is difficult
to determine exactly which note is an intro. In some cases, an intro contains multiple
note categories, and, in other cases, an intro-like sequence appears in the middle of
a song. Here, we propose simply defining an intro as the sequence at the beginning of
the song. In other words, if the first note of a sequence is the first note of the song, the
sequence is an intro, and otherwise it is a non-intro. To confirm the effectiveness of this
definition, we compared a model that makes a distinction between intros and non-
intros, in which conditional probabilities given intros and non-intros are different, and
a model that does not. We call the former model an intro (I) model and the latter a no-
intro (NI) model.

Each of the three characteristics was modelled in two different ways (FO vs. VO, ER
vs. MR and I vs. NI), and combining them resulted in 23 = 8 models in total (FO-ER-I,
FO-ER-NI, FO-MR-I, FO-MR-NI, VO-ER-I, VO-ER-NI, VO-MR-I and VO-MR-NI).
Eight models in a bird are shown in Figure 2 as an example. The maximum lengths of
the dependency of the VO models were 13.0 ± 8.1 for the VO-ER-I model, 12.6 ± 8.0
for the VO-ER-NI model, 17.3 ± 6.0 for the VO-MR-I model and 16.9 ± 5.9 for the VO-
MR-NI model. If the syntax was modelled with a 17th-order Markov process and the
number of note categories is 7, for example, the required number of the given
sequences would be 717 ~ 2 × 1014. On the other hand, the numbers of the given
sequences (i.e. the numbers of the rows in Figure 2(a)) in the VO models were 75.7 ±
62.5 for the VO-ER-I model, 69.3 ± 62.7 for the VO-ER-NI model, 184.9 ± 67.5 for the
VO-MR-I model and 169.4 ± 64.8 for the VO-MR-NI model. This demonstrates the
efficiency of the variable-order Markov process. In the I models, the intros (preceded by
‘i’ in Figure 2(a)) were followed by different probabilities from non-intros, suggesting
effective modelling of intros. In the MR models, the probability of a note category given
the repetition of the category depended on the length of the repetition, indicating the
implicit coding of the repetition length by the Markov process (compare P(x|D), P(x|
DD), P(x|DDD) in the VO-MR-NI model, for example). In the ER models, on the other
hand, the probabilities of the repetition length are explicitly modelled by the empirical
distributions (Figure 2(b,c)).

The eight models were evaluated in terms of a cross-validation likelihood (Figure 3).
The probabilities in each model were estimated from a part of the recorded songs, and
the likelihoods for the rest of the songs were calculated. The best model was the VO-
MR-I model, (i) the one with the variable order Markov process (ii) with repetitions
modelled by the Markov process (iii) that makes a distinction between intros and non-
intros. The likelihood of this model was 0.71 ± 0.086 (mean ± standard deviation),
larger than other models in all birds (p = 3.42 × 10−3, Wilcoxon signed-ranked test with
Bonferroni correction).

364 T. KOUMURA AND K. OKANOYA



Distributed syntax model

Model selection demonstrated that generated note categories depended on approxi-
mately 10 preceding notes including repetitions, and depended on whether the previous
sequences were intros. Although the model effectively captures the characteristics of the
song syntax, it may not be natural to assume that the syntax is directly encoded in the
brain in the form of a table of conditional probabilities. Also, the number of the given
sequences may be too large in analysing experimental data, which are often limited by
experimental constraints. Thus, in the second step of this study, we designed
a biologically more-relevant syntax model, considering the characteristics of the most
effective symbolic model.

Here, we applied an idea developed in the field of natural language processing. Even
if there are millions of words with long-range dependencies with variable length, a word
is represented with a fixed-length vector (Mikolov et al. 2013a, 2013b). Such
a representation is called distributed word representation. In this study, a fixed-length
vector was used as the given variable of the conditional probability. Each element of the
vector encodes the timing of the preceding notes of the particular category. Specifically,
to make the model consistent with the most effective symbolic model, each element of
the vector is calculated from the sum of the decaying values activated at note onsets
with the particular category (Figure 4). For example, in the song in Figure 4, the note
sequences are represented by six time-varying values (i.e. a six-dimensional vector).
First, a value corresponding to category A (the time course labelled as A in Figure 4) is
activated at the onset of the note. Then, the value gradually decreases until the next
arrival of the note with category A (in the case of Figure 4, this happened to be the next
note). In this way, we could naturally model (i) long-range dependency and (ii)
repetitions. Also, (iii) resetting the values to 0 at the beginning of the song created
a distinction between intros and non-intros. Once the given variable is calculated, it is
mapped to the conditional probability of the next note categories by a non-linear
classifier, such as an artificial neural network (Figure 5). In contrast to the symbolic
syntax model using symbolic note representation, we call the new model distributed
syntax model using distributed note representation.

Because the output of the model is the conditional probability, the model can be
evaluated by a likelihood, as in the conventional symbolic models. The cross-validation
likelihood of the distributed model was 0.82 ± 0.084 (mean ± standard deviation), larger
than the best symbolic model in all birds (Figure 3, bottommost row; p = 3.90 × 10−3,
Wilcoxon signed-ranked test with Bonferroni correction). This result indicates that the
distributed representation combined with a non-linear classifier predicts novel songs
better than the conventional model based on symbol sequences. The result demon-
strated the behavioural relevance of the distributed model by showing the ability to
predict novel songs.

The time constant of the decay was an important parameter that controls the length
of the dependency. It was determined by cross-validation within training data. The
optimal time constant was 203.6 ± 159.7 ms.

BIOACOUSTICS 365



Discussion

First, to seek an effective way to model song syntax, we evaluated various symbolic
models and demonstrated that the length of the dependency should be variable, that
repetitions should not be reduced to a single symbol, and that intros should be
generated from probabilities different from those of non-intros. Although each of
these characteristics has been proposed and demonstrated previously, we believe that
testing these characteristics in a single unified framework is an important contribution.

Next, based on these characteristics, we designed a new model that is more biolo-
gically relevant and at the same time can generate note sequences. The distributed
model predicted the novel songs better than the symbolic models. The result encourages
us to expect that distributed representation might also be a good model of the neural
representation of song syntax.

Effective symbolic model

The most effective symbolic model had the following characteristics: (i) the probabilities
of note categories depend on the variable length of the preceding sequences; (ii)
repetitions are modelled by the Markov process as with non-repetitions; (iii) probabil-
ities of note categories given intros and those given non-intros are different.

Although this is the first time that a variable-order Markov process has been applied
to song syntax in Bengalese finches, our result is in line with other studies. Long-range
dependency of song syntax in Bengalese finches has been indicated in previous studies
(Katahira et al. 2011; Yamashita et al. 2011), and a variable-order Markov process has
been applied to song syntax in canaries (Markowitz et al. 2013). A variable-order
Markov process makes it possible to reduce the number of given sequences by avoiding
memorization of the sequence patterns that give similar conditional probabilities with
shorter sequences (Ron et al. 1996). Also, the variable-order Markov process does not
involve memorization of sequence patterns that do not appear in the songs. This is
consistent with the study showing that neurons respond more to frequent patterns than
to the patterns that do not appear in the songs (Bouchard and Brainard 2013).

Our result indicates that repetitions are better modelled by Markov processes than by
empirical distributions. This is in accordance with the previous computational studies
targeting membrane potentials in neural populations (Wittenbach et al. 2015). These
studies have shown that repetitions can be generated in the same neural circuit as non-
repetitions. Although another study indicated that repetitions should not be modelled by
a Markov process (Kershenbaum et al. 2014), this does not contradict the present results,
because the other study compared Poisson distributions and a first-order Markov process,
which is not suitable for repetitions. That model is similar to the FO-ERmodel, except that,
in the FO-ER model, repetitions were modelled with empirical distributions rather than
using Poisson distributions.

A physiological and behavioural study has suggested that intros have a function of
preparation for singing, possibly generated with different mechanisms from those of
non-intros (Rajan and Doupe 2013). The present result is consistent with this, indicat-
ing that intros are better modelled with different probabilities from those of non-intros.
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Distributed syntax model

The proposed distributed syntax model naturally incorporated the characteristics of
the best symbolic model. (i) Long-range dependences were modelled by decaying
unit activities and the non-linear classifier. The length of the dependency was
controlled by the time constant of the decay. (ii) Repetitions and non-repetitions
were modelled by the same model framework. (iii) The probabilities given intros
were made different from those given non-intros by setting the unit activities to 0 at
the beginning of a song.

Conventionally, song-related neural activities are analysed in terms of symbolic
representation of note sequences. Spike rates are compared with combinations of two
or three note categories (Nishikawa et al. 2008; Fujimoto et al. 2011; Yamashita et al.
2011) or with conditional probabilities with pooled note categories (Bouchard and
Brainard 2013). Analysing neural activities for every combination of note categories,
including intros and repetitions, is difficult, because the possible combinations increase
exponentially with the length of the sequence. The distributed model might be able to
provide a good representation for explaining song-related neural activities.

Decaying neural activities in the bird brain have been experimentally demonstrated
(Bouchard and Brainard 2016). The model is biologically realizable assuming that there
are populations of neurons that encode the occurrence of notes by their decaying
activities, which in turn are used for predicting the category of the next note.
Approximating biological events by decaying variables has been applied to various
phenomena, such as neural activities and biochemical reactions (Honda et al. 2013;
Rahman et al. 2018). Our results demonstrate that a similar paradigm is also applicable
for explaining animal behaviours.

The design of the distributed model using a fixed-length vector for representing its
internal state makes it easy to include other biological components, such as auditory
feedback. For example, auditory feedback may be represented with another fixed-length
vector and added to the distributed representation of the preceding sequences.
Although finding a good way to represent auditory feedback is beyond the scope of
this study, it can be modelled in such a way that inclusion of auditory feedback
improves the model’s performance to predict observed note sequences.

In previous computational studies, a neural circuit for syntax coding has been
proposed using the framework of spiking neurons, which explains detailed microscopic
mechanisms of syntax coding (Hanuschkin et al. 2011). On the other hand, because the
present model is a generative model of note sequences, it can be macroscopically
evaluated by the likelihood of actual note sequences. Therefore, these two models do
not contradict each other, but they enhance the understanding of song syntax from
different points of view.

Time constant

In the current study, the optimal time constant of the decay was ~200 ms, which
approximately corresponds to a duration of several notes. Similar values have been
reported in previous studies: 50–200 ms in area X (Kojima and Doupe 2008), 700–1000
ms in HVC (Bouchard and Brainard 2013) and 250 ms in the behavioural experiment
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(Okanoya and Dooling 1990). Note that the definitions of the time intervals and the
estimation methods are completely different among studies. For instance, 700–1000 ms
in Bouchard et al. (2013) (Bouchard and Brainard 2013) is the time for the neural
responses to reach their steady state, supposedly larger than the time constant of
exponential decay. Nevertheless, it may be interesting that all these studies, including
ours, reported a similar order of magnitude.

Limitations and possible applications

A limitation in this study is that, because the note categories were identified from the sound
spectrogram of the whole sequence, the categories could be selected in a sequence-biased
manner. For example, the last F in Figure 1 might have been identified as another category
if it were not within that repetition of F’s. The degree of sequence awareness in category
identification can affect the obtained results. If category identification was affected by larger
biases of sequence patterns, the resulting note categories can be more easily predicted from
the preceding sequences, leading to more stereotyped conditional probabilities and depen-
dence on shorter preceding sequences.

Because sequences in Bengalese finches affect the acoustic structure of a note
(Wohlgemuth et al. 2010), it may be better to apply note category identification and
syntax estimation iteratively and alternately, instead of fixing the identified categories
before estimating a syntax model, as done in this study. Such an application may be an
interesting future work.

The proposed model may be applied to quantify changes of sequences within an
individual bird. It has been shown that sequence patterns change as a result of brain
lesions (Hosino and Okanoya 2000), changes of social contexts (Sakata et al. 2008),
external feedback (Warren et al. 2012) and reduced auditory feedback (Okanoya and
Yamaguchi 1997). They also change across time as a young adult (Yamashita et al.
2008), in an old individual (James and Sakata 2014), and when singing in a helium
atmosphere (Yamada and Okanoya 2003). Such changes may be reflected in the model
as changes of the conditional probabilities and/or their given variables (i.e. a set of given
sequences in the symbolic model or the decay time constants in the distributed model).
For example, sequence patterns become more stereotyped as a bird gets older
(Yamashita et al. 2008; James and Sakata 2014) or when a bird sings toward females
(Sakata et al. 2008), which may be captured by removing given sequences in the
symbolic model, decreasing the decay time constants in the distributed model, and
modifying the conditional probabilities in both models. Also, external feedback can
modify a conditional probability of note categories given a targeted sequence (Warren
et al. 2012). Such modification can be easily reflected in the model by fitting the
modelled conditional probabilities to the observed songs.

Data availability

The data supporting the findings of this study are available within the supplementary
materials.
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Appendices

Appendix 1. Algorithm for constructing the symbolic models

Inputs: symbol sequences.
Outputs: conditional probabilities of note category P(x|X), where x denotes a note category

and X denotes a note sequence, and the set of given sequences G. In addition, for the ER-NI
models, probability of the repetition length Px(l), where l denotes the repetition length, or for
the ER-I models, probability of the repetition length for intros PIx(l) and that for non-intros
PNIx(l).

Hyperparameters: lower bound of likelihood ratio R, smoothing constant γ, maximum length
L. In addition, for the ER-NI models, hyperparameters for smoothing the probability of the
repetition length: Ax and αx, or for the ER-I models, hyperparameters for smoothing the
probability of the repetition length for intros and non-intros: AIx, αIx, ANIx and αNIx

For the ER-NI models, do the following.
Count all repetition length Cx(l) (e.g. if X = AABAB, CA(1) = 1, CA(2) = 1, CB(1) = 2). Note

occurrence without repetition is regarded as l = 1.

PxðlÞ ¼
CxðlÞP
l0Cxðl0Þ þ Axαl�1

x

1þ Ax
1�αx

Reduce all the repetitions into single notes (e.g. AABCCD → ABCD).
For the ER-I models, calculate PIx(l) and PNIx(l) for each of the intros and non-intros as for the

ER-NI models.
For the I models, attach a symbol ‘i’ at the beginning of each song (e.g. AABCDD→ iAABCDD).
Count all combinations of note sequences with length less than or equal to L, and let the count be

denoted by C(X) (e.g. if X = ABABA and L = 3,C(A) = 3, C(B) = 2, C(AB) = 2, C(BA) = 2, C(ABA) = 2,
C(BAB) = 1, and C(AA) = C(BB) =C(AAA) =C(AAB) = C(ABB) = C(BAA) =C(BBB) = C(BBA) = 0).

Define P(x|X) as P(x|X) = C(Xx)/C(X), where Xx is X followed by x.
Let the special symbol ε be a sequence with length 0. Define P(x|ε) as follows:

PðxjεÞ ¼ PðxÞ ¼ CðxÞP
x0Cðx0Þ

For each subsequence X ∈ {X|C(X) > 0}:
If ∃x, P(x|X)/P(x|X’) > RN, add X to G, where X’ is a sequence starting from the second symbol

of the X, and N denotes the number of notes.
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For each X in G:
For i = 2 to L, add x2. . .xi to G if not contained in G, where xi is the symbol at the position i in X.
Add ε to G.
Replace conditional probabilities P(x|X) for all X in G with the smoothed probability.

Smoothed PðxjXÞ ¼ PðxjXÞ þ γ

1þ Sj jγ ;

where |S| is the number of note categories.
Hyperparameters were determined by cross-validation within training data from the following

range: R ∈ [1 × 10−6, 1 × 10−2], γ ∈ [1 × 10−6, 1/|S|], Ax ∈ [1 × 10−3, 1 × 10−1], α ∈ [1.1, 2].
For the VO models, L = 32. For the FO models, L = 2 and R = 0 (i.e. G contains all sequences
with length less than or equals to 2).

Appendix 2. Training of the classifier of the distributed syntax model

The parameters of the artificial neural network of the distributed syntax model were trained with
stochastic gradient descent. Parameters were initialized randomly according to He et al. (2015)
(He et al. 2015) and updated for a part of the training data by Adam (Kingma and Ba 2015) until
the likelihood stopped increasing for 200 iterations for the other part of the training data.

The values of τx were assumed to be independent of x in order to reduce the computational
time; thus, τx = τ for all x. The value of τ and the number of hidden units were the hyperpara-
meters and determined by cross-validation within training data from the range of [50, 1000] ms
for τ and [8, 128] for the number of hidden units.

Appendix 3. Average likelihood

The average likelihood of the MR-NI model is calculated as follows:

Average likelihood ¼
Yk
k¼1

YIk
i¼1

PðxkijXkiÞ
 ! 1P

k

Ik

where k denotes a song index, K denotes the number of songs, i denotes the position of a note in
a song, Ik denotes the number of notes in the song k, and xki denotes the note category at the position
i in the song k. The likelihood was powered by the inverse of the total number of notes in the data, Σk
Ik. Xki is the longest sequence inG that ends with xk,i-1. For example, if X = {A, B, C} and G = {ε, A, B,
C, AB}, the average likelihood for a song ABBBC is (P(A)P(B|A)P(B|AB)P(B|B)P(C|B))1/5.

In the I models, the probabilities given intros are different from the probabilities given non-
intros. For example, if X = {A, B, C} and G = {ε, A, B, C, AB, i, iA}, the average likelihood of VO-
MR-I model for a song ABBBC is (PI(A)PI(B|A)P(B|AB)P(B|B)P(C|B))

1/5. In this case, the first
two probabilities are PI because G contains ‘i’ and ‘iA’.

When calculating the average likelihood of the ER models, all repetitions in the songs were
reduced to a single note before applying the conditional probability, which is multiplied by Px(l).

Average likelihood ¼
Yk
k¼1

YI0k
i0¼1

Pðxki0 jXki0 ÞPxkt ðlki0 Þ
 ! 1P

k

Ik

where Ik’ and i’ denote the length of and the position at the repetition-reduced song k. For
example, if X = {A, B, C} and G = {ε, A, B, C, AB}, the average likelihood for a song ABBBC is
(P(A)PA(1)P(B|A)PB(3)P(C|B)PC(1))

1/5. The average likelihood of the I-ER models of the above
example will be (PI(A)PIA(1)PI(B|A)PNIB(3)P(C|B)PNIC(1))

1/5.
The average likelihood of the distributed model is calculated as follows:
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Average likelihood ¼
Yk
k¼1

YIk
i¼1

yki

 ! 1P
k

Ik

yki ¼ f ðrðtkiÞÞ
where tki denotes the onset time of the note at position i of the song k.
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