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Sleep-wake behaviors are important for survival and highly conserved among animal
species. A growing body of evidence indicates that the midbrain dopaminergic system
is associated with sleep-wake regulation in mammals. Songbirds exhibit mammalian-
like sleep structures, and neurons in the midbrain ventral tegmental area (VTA) and
substantia nigra pars compacta (SNc) possess physiological properties similar to those
in mammals. However, it remains uncertain whether the neurons in the songbird
VTA/SNc are associated with sleep-wake regulation. Here, we show that VTA/SNc
neurons in zebra finches exhibit arousal state-dependent alterations in spontaneous
neural activity. By recording extracellular single-unit activity from anesthetized or freely
behaving zebra finches, we found that VTA/SNc neurons exhibited increased firing
rates during wakefulness, and the same population of neurons displayed reduced
firing rates during anesthesia and slow-wave sleep. These results suggest that the
songbird VTA/SNc is associated with the regulation of sleep and wakefulness along with
other arousal regulatory systems. These findings raise the possibility that fundamental
neural mechanisms of sleep-wake behaviors are evolutionarily conserved between birds
and mammals.
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INTRODUCTION

Midbrain dopaminergic neurons in the ventral tegmental area (VTA) and substantia nigra pars
compacta (SNc) play an important role in a wide variety of behaviors such as learning, motivation,
and movement (Berke, 2018). However, the relationship between VTA/SNc and sleep-wakefulness
has been relatively overlooked. Early in vivo electrophysiological studies in rats (Miller et al., 1983)
and cats (Trulson and Preussler, 1984) showed that dopaminergic neurons in the VTA/SNc have
similar firing rates during sleep and wakefulness, while a later study revealed enhanced burst firing
during REM sleep (Dahan et al., 2007). In contrast, non-dopaminergic neurons in the VTA/SNc
showed increased firing rates during wakefulness and REM sleep (Miller et al., 1983; Lee et al.,
2001). More recently, a growing body of evidence supports the notion that VTA dopaminergic
and non-dopaminergic neurons regulate sleep-wake behaviors in rodents. VTA dopaminergic
neurons exhibit higher calcium activity during wakefulness and REM sleep than during non-REM
sleep (Eban-Rothschild et al., 2016), and activation of dopaminergic neurons by optogenetics or
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chemogenetics induces wakefulness (Eban-Rothschild et al.,
2016; Taylor et al., 2016; Oishi et al., 2017). Besides, VTA
GABAergic neurons show high calcium activity during
wakefulness and REM sleep (Yu et al., 2019; Eban-Rothschild
et al., 2020), and chemogenetic activation of VTA GABA
and glutamate neurons induce changes in arousal states (Yu
et al., 2019). Although sleep-wake behaviors are evolutionarily
conserved among animal species, much of what we know has
been learned from studies in mammals. Thus, the relationship
between VTA/SNc neurons and sleep-wake regulation in
non-mammalian vertebrates such as birds remains unknown.

Songbirds provide a unique opportunity to study the
relationship between dopaminergic system and sleep-wake
regulation. Birds exhibit sleep structures similar to mammals
(Blumberg and Rattenborg, 2017) and mammalian-like sleep
features (such as slow-wave sleep, intermediate sleep, and REM
sleep) have been demonstrated in zebra finches (Low et al.,
2008). In addition, the midbrain dopaminergic system has been
relatively well-characterized in zebra finches. The VTA/SNc
contains dopaminergic and non-dopaminergic neurons, which
share many physiological properties and anatomical connections
with those in mammals (Lewis et al., 1981; Gale and Perkel,
2006). Recent electrophysiological studies show that basal
ganglia-projecting dopaminergic neurons in the VTA encode
performance errors (Gadagkar et al., 2016), and manipulation
of dopaminergic activity affects song learning (Hisey et al.,
2018; Xiao et al., 2018). These studies highlight the significance
of the VTA dopaminergic system in sensorimotor learning in
songbirds. Nevertheless, it remains uncertain whether VTA/SNc
neurons in songbirds are associated with sleep-wake regulation.
Given the importance of sleep-wake regulation and anatomical
homologies between mammalian and avian brains, comparing
the neural activity in the VTA/SNc between birds and mammals
is critical to uncover the common neural mechanisms underlying
the regulation of sleep and wakefulness. We thus examined
whether VTA/SNc neurons in zebra finches exhibit arousal
state-dependent alterations in neural activity by recording
extracellular single-unit activity from anesthetized and freely
behaving conditions.

MATERIALS AND METHODS

Animals
Male zebra finches were obtained from our breeding colony
(n = 6) or purchased from a local supplier (n = 2). Birds were
kept on a 14L:10D photoperiod. Food and water were available
ad libitum. Data were acquired between 9:30 a.m. and 8:30
p.m. (light-phase: 7:00 a.m. to 9:00 p.m.). On each bird, 2–5
recording sessions were made (3 ± 1.3 sessions, mean ± SD,
n = 8 birds, 2 anesthetized and 6 free behaving conditions)
over 1–5 recording days (2.6 ± 1.6 days, mean ± SD). For
electrophysiological recordings in anesthetized conditions, two
adult birds from a local supplier (>120 days post-hatch, exact
age unknown) were used. For electrophysiological recordings in
free behaving conditions, six birds from our breeding colony
(recording onset: 56–86 days post-hatch, 64 ± 11.3 days,

mean ± SD) were used. Single-unit recordings in free behaving
conditions were performed from both juvenile (<90 days, 56–
87 days post-hatch, 33 single-units from 6 birds) and adult
period (>90 days, 91–101 days post-hatch, 3 single-units from
1 bird). Since there were no differences between the juvenile and
adult period data obtained from free behaving birds, both data
sets were pooled for the subsequent analysis. All experiments
were approved by the animal experimentation committee at
the University of Tokyo and performed in accordance with the
established guidelines.

Surgery and Electrophysiological
Recordings
General surgical procedures and electrophysiological recordings
were described in a previous report (Yanagihara and Hessler,
2012). Single-unit activity from VTA/SNc under isoflurane
anesthesia was recorded extracellularly in head-restrained adult
birds (n = 2). In brief, birds were anesthetized with 1.5%
isoflurane and placed in a stereotaxic apparatus (Narishige) on
top of a heating pad. Lidocaine (2%, Maruishi Pharmaceutical)
was applied to the scalp before the incision was made.
Small craniotomies were made, and a tungsten electrode (3
M�, Microprobe) or glass capillary filled with Fluoro-Ruby
(2.5%, AG335 Merck Millipore) was lowered into the brain
using motorized manipulator (MC-5B, National Aperture Inc.).
Extracellular neuronal signals were amplified (10,000-fold),
band-pass filtered (0.5–9 kHz), digitized (40 kHz) with a Plexon
recorder, and stored on a PC as data. Extracellular single-unit and
local field potential (LFP) activity was recorded from VTA/SNc
in freely behaving birds (n = 6). A manually movable microdrive
attached to four bundles of tetrode wire and reference wire (12.5
µm in diameter, RO800, Sandvic) was chronically implanted
while juvenile zebra finches were anesthetized with 1–1.3%
isoflurane in a stereotaxic apparatus. Stereotaxic coordinates used
for VTA/SNc were as follows; anterior: 0.8–1.0 mm, lateral: 0.5–
0.8 mm, depth: 5.7–6.7 mm from the bifurcation of the sagittal
sinus, head angle: 28 degrees. After recovery from the surgery,
birds were kept in a recording chamber (30 × 20 × 25 cm),
which was placed in a sound attenuation box (50 × 40 × 40 cm),
and single-unit and LFP activity were recorded while they were
awake and freely behaving. Extracellular neuronal signals were
amplified (10,000-fold), band-pass filtered (0.5–9 kHz), and
digitized (40 kHz), and LFP signals were amplified (1,000-fold),
band-pass filtered (0.7–170 Hz), and digitized (20 kHz) with
a Plexon MAP system. To monitor behavioral states, a digital
video camera was placed in the sound attenuation box and video
signals were recorded synchronously with neural data acquisition
(CinePlex Behavioral Research System, Plexon). Both neural and
video data were stored on a PC.

Analysis of Electrophysiological Data
Spike sorting was performed using an off-line sorter (Plexon),
and well-isolated single-units were analyzed with MATLAB
(MathWorks). For each single-unit, spike width was calculated
as half-width of first negative deflections of mean of 20 spike
waveforms. To compare the difference in firing rates between
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isoflurane-induced anesthetized and awake states, mean firing
rates were calculated for each neuron using 30 s during
anesthetized or awake periods. A bird was considered awake
when the bird’s eyes were kept open for at least 30 s after the
isoflurane was turned off. To quantify burst firing, spikes were
determined as a burst when the inter-spike interval (ISI) was
lower than a threshold (<6 ms) and ISI-based bursting index,
the proportion of the burst, was calculated (Simonnet and Brecht,
2019). Variability of firing was quantified using the coefficient of
variation (CV) of ISI (CV = SD/mean).

For data obtained from the freely behaving condition,
inspection of video and LFP signals was used to assess the
birds’ arousal states. Periods of sleep were determined by
immobility, eye-closing, and slow-wave activity in LFP signals
(Figures 3B,D). In all other periods, birds were determined to
be awake. Spectral power of LFP for each bird was calculated
in mV2/Hz for 3-s windows using MATLAB toolbox EEGLAB
(Brunner et al., 2013). Mean power spectral density (PSD) of
10 epochs of awake or sleep period was separately calculated
for each bird, and averaged over all birds (n = 6 free behaving
birds, Figure 3G). Mean awake firing rates, ISI-based bursting
index, and CV of ISI were calculated from a 30-s data segment
during an awake period where birds were neither vocalizing
nor eating/drinking. Multiple units were recorded per bird.
Since the activity of these units are unlikely to be independent
from each other, the values for individual birds were averaged
together for the purpose of statistical analysis (Figure 4C). To
compare the difference in firing rates between sleep and awake
states, nonparametric Wilcoxon signed-rank test for paired
samples was used for statistical testing. The significance level
was set at α = 0.05. In addition to the above analysis, narrow-
spike units and wide-spike units data were separately analyzed
(Figure 4D). In the case of narrow-spike data, units with a
spike half-width less than 0.12 ms were included. In the case
of broad-spike data, units with a spike half-width more than
0.12 ms and firing rate during sleep less than 15 Hz were
included. Since there were no differences between the neural data
acquired from VTA and SNc, both data sets were pooled for the
statistical analysis.

Anatomical Verification of Recording
Sites
After electrophysiological recordings, electrical lesions were
made (20 µA, 20 s, Stimulus Isolator A365, WPI) or Fluoro-
Ruby was deposited using an iontophoresis pump (BAB-501,
Kation Scientific). The birds were deeply anesthetized with
an overdose of pentobarbital sodium (Somnopentyl, Kyoritsu
Seiyaku) and perfused with 4% paraformaldehyde (PFA), and
brains were dissected out. The brains were post-fixed overnight
in 4% PFA followed by 30% sucrose in phosphate-buffered saline.
Sagittal brains sections (40 µm in thickness) were made with
a freezing microtome (ROM-380, Yamato Kohki Industrial).
Midbrain dopaminergic neurons were stained with an antibody
against tyrosine hydroxylase (TH, MAB318, Merck Millipore),
and the recording electrode track or injection site of Fluoro-Ruby
was verified (Figure 1D).

FIGURE 1 | Single-unit recordings from VTA/SNc and the positions of
recording sites. (A) Two distinct spike waveforms (top) and the spike clusters
(bottom) from 2 single-units in VTA. Broad spike (red, left) and narrow spike
(blue, right) units. Red and blue lines represent mean spike waveform of each
single-unit. The gray lines represent the single spikes (20 spike waveforms). In
the bottom panels, colored dots (red and blue) indicate extracted spikes as a
single-unit. Gray dots indicate noise cluster. (B) Distributions of spike
half-width of all single-units recoded from anesthetized (gray histogram, 9
units, 2 birds) and free-behaving (orange histogram, 36 units, 6 birds)
conditions. (C) Spontaneous firing rates of each VTA/SNc unit during awake
state is plotted against the spike half-width. Gray and orange circles denote
single-unit data from anesthetized and free-behaving conditions, respectively.
(D) Histological verification of electrophysiological recording sites. Tyrosine
hydroxylase (TH) immunostaining (top) and injection sites of Fluoro-Ruby
(bottom). White arrows indicate the track of the recording electrode in SNc.
(E) Recording sites from all birds (2 anesthetized and 6 free-behaving
conditions) are displayed in the example sagittal sections. Same symbols
(color/shape) denote recordings from the same bird. Multiple single-units (2–6
units) were simultaneously recorded at 10 out of the 20 recording sites.

RESULTS

We assessed activity in VTA/SNc neurons across sleep-
wake states by electrophysiological recordings under isoflurane
anesthesia or in freely behaving conditions. Consistent with
the previous studies (Gale and Perkel, 2006; Kearney et al.,
2019), we observed broad spike and narrow spike neurons
in the zebra finch VTA/SNc (Figure 1). Broad spike neurons
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FIGURE 2 | Changes in spontaneous neural activity across isoflurane-anesthetized and wake states. (A) Representative spike rate histogram of a single VTA neuron
(unit-1) under isoflurane anesthesia. The top bar displays periods when isoflurane anesthesia is turned on (black) and off (white). Gray shadings denote the
anesthetized period. Arrows indicate when birds opened and closed their eyes. Inset shows spike waveforms. (B) Example of raw spike traces under anesthetized
(1, top) and awake (2, bottom) states. (C) Representative spike rate histogram of simultaneously recorded 2 single SNc neurons (unit-2, -3) under isoflurane
anesthesia. Insets show spike waveforms and spike clusters. (D) Comparison of mean spontaneous firing rates between anesthetized and awake (unanesthetized)
states, n = 9 neurons, 2 birds. (E) Comparison of ISI-based bursting index, proportion of ISIs <6 ms, between anesthetized and awake states. (F) Comparison of CV
(coefficient of variation) of ISI between anesthetized and awake states. The data shown in (A,C) (unit-1-3) are indicated by arrows in the scatter diagram (D–F). Same
symbols (color/shape) in (D–F) are data from the same bird and correspond to the histological data in Figure 1E.

tended to show low spontaneous firing rates, while narrow
spike neurons showed variable firing rates including both
low and high spontaneous firing rates (Figure 1C). During
single-unit recordings from head-restrained zebra finches under
anesthesia, isoflurane was briefly turned off to examine whether
the neural activity was altered (Figure 2). When isoflurane
was turned off for a few minutes, the firing rate of the
neurons gradually increased prior to eye opening (Figures 2A,C).
After turning on isoflurane, on the other hand, the firing rate
gradually decreased prior to eye closing. When comparing neural
activity across anesthetized and awake states, most neurons
showed higher firing rates during awake state (Figure 2D).
To quantify burst firing activity, we defined ISI-based bursting

index calculated as proportion of short ISIs (<6 ms). When
comparing the bursting index across anesthetized and awake
states, some neurons showed higher bursting index during awake
state (Figure 2E). To compare the firing variability between
anesthetized and awake states, we calculated the coefficient of
variation (CV) of ISI and there was no difference in the firing
variability (Figure 2F).

We next examined whether VTA/SNc neurons also exhibit
arousal state-dependent alterations in neural activity during
natural sleep-wake transitions. Since zebra finches, especially
juvenile birds, often engage in daytime naps (Margoliash and
Schmidt, 2010), we took advantage of this natural sleep-
wake transition. We recorded multiple single-units and local
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FIGURE 3 | Changes in spontaneous neural activity across sleep-wake states in the freely behaving condition. (A) Representative spike rate histogram of a single
SNc neuron (unit-4) during natural sleep-wake transitions. The top bar displays awake (white) and sleep (black) periods. Gray shadings denote sleep periods. Inset
shows spike waveforms. (B) Example of LFP traces under awake (1) and sleep (2) periods. Note slow-wave activity during sleep. (C) Representative spike rate
histogram of simultaneously recorded 2 single VTA neurons (unit-5, -6) during natural sleep-wake transitions. (D) Example of LFP traces under awake (1) and sleep
(2) periods. (E) Power spectral density (PSD) for samples in 3-s windows (awake: 1, sleep:2) shown in (B). (F) PSD for samples (awake: 1, sleep:2) shown in (D).
(G) Mean PSD across all 6 free behaving birds for awake and sleep periods.

field potentials (LFPs) from VTA/SNc in freely behaving
juveniles during sleep-awake transitions (Figure 3). In the
daytime, juvenile zebra finches showed brief episodes where

they transitioned from awake to asleep, and typically each
sleep episode lasted for several minutes (Figures 3A,C). States
of arousal were determined by both LFP activity and video
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FIGURE 4 | Comparison of spontaneous neural activity between sleep and awake states. (A) Comparison of firing rates between awake and sleep states (n = 36
neurons, 6 birds). Each symbol indicates data from a single unit. Same symbols (color/shape) are from the same bird and correspond to the histological data in
Figure 1E. (B) The low firing rate portion (0–15 Hz) of the same data as in (A) are displayed for clarity. (C) Comparison of mean firing rate of all units recorded from
individual birds (n = 6 birds) between sleep and awake states. Each symbol indicates data from a single bird. (D) Comparison of mean firing rate of narrow-spike
units (blue circles) or broad-spike units (green circles) recorded from individual birds (n = 6 birds) between sleep and awake states. Each symbol indicates data from
a single bird. (E) ISI-based bursting index (proportion of ISIs < 6 ms) during awake state and sleep state. Each symbol indicates data from a single unit. (F) CV of ISI
during awake and sleep state. Each symbol indicates data from a single unit. The data shown in Figures 3A,C (unit-4-6) are indicated by arrows in each scatter
diagram.

signals. Consistent with previous studies in birds (Hahnloser
et al., 2006; Low et al., 2008; Yanagihara and Hessler, 2012;
van der Meij et al., 2019), LFPs exhibited slow-wave activity
during sleep (Figures 3B,D). The LFP signals showed large
low-frequency power (<20 Hz) during sleep, while high-
frequency power (>20 Hz) during sleep and awake states
were indistinguishable (Figures 3E–G). During natural sleep-
wake transitions, we observed that VTA/SNc neurons exhibited
alterations in their firing rate depending on the arousal states
(Figures 3A,C). Overall, most of the VTA/SNc neurons exhibited
higher firing rates in awake state than in slow-wave sleep
(Figures 4A,B). We averaged together the firing rate of all
units recorded from individual birds, and compared between
sleep and awake state. We found that VTA/SNc neurons
showed higher spontaneous firing rates in the awake than
sleep state (Figure 4C, sleep firing rate = 13.1 ± 1.9, awake
firing rate = 20.4 ± 2.6, mean ± s.e.m., Wilcoxon signed-
rank test, p = 0.0313, n = 6 birds). We further analyzed
broad-spike and narrow-spike units separately, and compared
between sleep and awake states (Figure 4D). In narrow-spike
unit case, we found significant difference between sleep and wake
states (Figure 4D, blue circles, sleep firing rate = 13.9 ± 4.8,
awake firing rate = 24.8 ± 4.4, mean ± s.e.m., p = 0.0313,
n = 6 birds). In broad-spike unit case, we also found

significant difference between sleep and awake states (Figure 4D,
green circles, sleep firing rate = 2.5 ± 1.3, awake firing
rate = 6.4 ± 1.8, mean ± s.e.m., p = 0.0313, n = 6 birds).
When comparing bursting activity and firing variability across
sleep and awake states, most of the VTA/SNc neurons exhibited
higher bursting activity and firing variability in awake state
(Figures 4E,F), though the bursting index did not reach statistical
significance (sleep bursting index = 0.04 ± 0.01, awake bursting
index = 0.13 ± 0.05, mean ± s.e.m., p = 0.1563, n = 6 birds,
sleep CV of ISI = 1.04 ± 0.09, awake CV of ISI = 1.59 ± 0.16,
mean ± s.e.m., p = 0.0313, n = 6 birds). These findings
demonstrate that spontaneous activity in VTA/SNc neurons
change across sleep-wake transitions with increased firing rates
during wakefulness.

DISCUSSION

In this study, we found that VTA/SNc neurons in zebra
finches exhibit arousal state-dependent alterations in neural
activity. In both isoflurane-induced anesthesia and natural sleep-
awake transitions, most VTA/SNc neurons showed increased
spontaneous firing rates during wakefulness and a reduction
in firing rates during slow-wave sleep. These results suggest
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that VTA/SNc neurons may play a role in regulating sleep-
wake transitions. To the best of our knowledge, this is the
first electrophysiological evidence of arousal state-dependent
alterations in neural activity in the songbird VTA/SNc.

Zebra finch VTA/SNc contains dopaminergic and non-
dopaminergic neurons, and shares physiological properties
similar to those in mammals (Gale and Perkel, 2006).
Dopaminergic neurons in both zebra finches and rodents have
relatively broad (long duration) action potential waveforms
and show slow spontaneous firing rates (<10 Hz), while non-
dopaminergic neurons have relatively narrow (short duration)
action potential waveforms and show variable or faster
spontaneous firing rates (Miller et al., 1983; Gale and Perkel,
2006; Kearney et al., 2019). Consistent with these previous
studies, we also observed both broad and narrow spike neurons
(Figure 1). Since our in vivo electrophysiological recordings
were made extracellularly, we cannot definitively identify the cell
types that were recorded. Despite this limitation, we observed
that some neurons displayed dopaminergic characteristics (slow
spontaneous firing rates and broad spike waveforms, Figure 3,
unit-4 and unit-5), and others displayed non-dopaminergic
characteristics (fast spontaneous firing rates and narrow spike
waveforms, Figure 2, unit-1-3, Figure 3, unit-6). Accordingly,
the data we obtained from zebra finch VTA/SNc most likely
includes both dopaminergic and non-dopaminergic neurons.
Importantly, most of the neurons we examined in this study
consistently showed increased firing rates, bursting activity,
and firing variability during wakefulness compared to slow-
wave sleep, thus suggesting that both dopaminergic and non-
dopaminergic neurons are involved in sleep-wake regulation.
In this study, however, we did not examine the relationship
between VTA/SNc activity and REM sleep, because our neural
recordings under freely behaving conditions were made during
daytime naps and we did not observe REM sleep during
such short sleep periods. Since VTA dopaminergic and non-
dopaminergic neurons in rodents exhibit enhanced activity
during REM sleep as well as wakefulness (Lee et al., 2001;
Dahan et al., 2007; Eban-Rothschild et al., 2016, 2020; Yu
et al., 2019), it will be important for future studies to examine
whether VTA/SNc neurons in zebra finches show similar
enhanced firing activity during REM sleep. Recent studies in
mammals (Miller et al., 1983; Lee et al., 2001; Eban-Rothschild
et al., 2016, 2020; Taylor et al., 2016; Oishi et al., 2017; Yu
et al., 2019) and insects (Kume et al., 2005) demonstrate
that the midbrain dopaminergic system is involved in the
regulation of sleep-wake transitions. Consistent with this, our
results show alterations in neuronal activity across sleep and
wakefulness in the songbird VTA/SNc, thus suggesting that the
role of the dopaminergic system in sleep-wake regulation is
evolutionarily conserved.

Sleep is highly conserved among most animals, and a growing
body of evidence demonstrates the importance of sleep in
memory consolidation and learning in many animal species
(Deregnaucourt et al., 2005; Klinzing et al., 2019; van der Meij
et al., 2020). In juvenile zebra finches, frequent transitions
between sleep and wakefulness during the daytime is assumed
to play a role in vocal learning (Margoliash and Schmidt, 2010).

In this study, we observed such daytime sleep-wake transitions
in juveniles and spontaneous activity in VTA/SNc neurons
was tightly linked to arousal state at the single neuron level.
One possible function of VTA/SNc neurons in juveniles may
be an arousal switch from wakefulness to an off-line sleep
mode in the daytime, leading to memory consolidation after
hearing song from a tutor bird or after vocal practice. In
support of this idea, neural replay or enhanced spontaneous
burst activity has been demonstrated in the song nuclei during
sleep (Dave and Margoliash, 2000; Hahnloser et al., 2006; Shank
and Margoliash, 2009; Yanagihara and Hessler, 2012), and those
brain areas receive dopaminergic and non-dopaminergic inputs
from the VTA/SNc (Lewis et al., 1981; Appeltants et al., 2000,
2002). In concert with other neuromodulatory systems such
as noradrenaline (Castelino and Schmidt, 2010), the VTA/SNc
may change brain states to facilitate leaning and sensory
processing. Further studies to manipulate VTA/SNc neuronal
activity (Xiao et al., 2018) during sleep will be necessary to
understand the functional relationships among the dopaminergic
system, arousal regulation, and learning. In conclusion, our
study shows that songbird VTA/SNc neurons display arousal-
dependent changes in spontaneous activity, suggesting that the
midbrain dopaminergic system plays an evolutionarily conserved
role in sleep-wake regulation.
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