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Abstract: The ability that is people’s self-monitoring and controlling of their memory processes is called metamemory. It has

been regarded as truly unique characteristics of human memory, and has been studied widely as a component of metacognition in

cognitive psychology. We aim to evolve artificial neural networks with neuromodulation, that has a metamemory function. Our

constructive approach is based on the repetition of evolutionary experiments, analysis of the evolved networks and refinement of

the measure, to reduce the gap between the functional properties of behavior and subjective reports of phenomenal experience.

In this paper, we show the evolution of a neural network that has metamemory function based on the self-reference of memory,

and analysis of the mechanism of metamemory.

Keywords: Metamemory, Cognitive science, Neural networks, Evolutionary computations

1 INTRODUCTION
Metamemory refers to people’s self-monitoring and self-

control of their own memory processes. It has been regarded

as truly unique characteristics of human memory [1], and has

been studied widely as a component of metacognition in cog-

nitive psychology. Testing metamemory in animals has been

a challenging topic as comparative studies. Memory aware-

ness in humans is inferred primarily based on verbal reports

from human subjects, which is difficult in animals. Hamp-

ton devised a delayed matching-to-sample (DMTS) paradigm

[2]: Animals able to distinguish between the presence and

absence of their own memory should improve accuracy if

allowed to decline memory tests when they have forgotten.

They also should decline tests by selecting the escape op-

tion more frequently if memory is attenuated experimen-

tally. Hampton showed that one of two macaque monkeys

examined met these criteria. Since then, metamemory of

other animals has been investigated based occasionally on

other methodologies (information-seeking and postdecision

wagering paradigms). Macaque monkeys, apes, and dolphins

are the only animals besides humans that were demonstrated

to exhibit metamemory skills [3].

Using a constructive computational method as an alter-

native approach, we have been investigating whether agents

controlled by artificial neural networks could have metamem-

ory capacity. We evolved neural networks using the neuro-

modulation technique by which modulatory neurons [4] can

dynamically alter the plasticity of the connections of the neu-

rons they project to. We successfully found some of the

evolved agents clearly showed the metamemory capability

from the perspective of the DMTS paradigm [5].

Using computational methods allows us to investigate the

mechanisms that drive the behaviors, while we have to rely

heavily on behavioristic paradigms (e.g., DMTS paradigm)

when dealing with living animals. Therefore, we then fo-

cused on the mechanisms of the evolved neural networks

that meets the Hampton’s criteria [6, 7]. We found that the

evolved neural networks just associate particular input con-

figurations that are more difficult than the rest, with the es-

cape option in order to obtain greater rewards. In the discus-

sion on interpretation of animal experiments, this type of so-

lution was indeed predicted, and for this reason, the paradigm

was criticized [8]. This finding lead us to define the following

two criteria to exclude such solutions.

• Criterion 1 (C1)

The agent satisfies one of the behavioristic paradigms

for metamemory (e.g., DMTS paradigm), but not by

changing the behavior according mainly to particular

stimuli configurations.

• Criterion 2 (C2)

C1 is met, but is based on the self-reference on some

part of the stored information regarding the stimuli in-

put.

We performed evolutionary experiments and analyzed the

evolved neural networks to find that detection of forgetting is

achieved not by self-reference on the stored information but

by some kind of spurious relationship between stored infor-

mation and escape selection both controlled by modulatory

neurons. In other words, the evolved neural networks satis-

fies C1 but not C2 [6, 7].

This paper explores neural networks with neuromodula-

tion that satisfy the criterion C2 by performing computa-

tional evolutionary experiments. For this purpose, we modify

the previous experimental settings, including the addition of

Gaussian noise to all of the neurons for obstructing the evo-

lution of neural circuits that are not robust.

2 TASK
Fig. 1 shows an overview of the task based on DMTS

paradigm [5]. Firstly, an agent receives a target pattern com-

posed of 5 binary digits, which is randomly selected from

00001, 00010, 00100, 01000 and 10000 in the study phase.

The delay phase follows, in which the agent receives 00000
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Fig. 1: The delayed match-to-sample task which is intro-

duced the escape option.

as a distractor pattern a predefined number of times defined

by Eq. 1, which will affect the degree of uncertainty in its

memory.

Ndelay = � −1

λ× ln (R)
�+ 1, (1)

where λ is a parameter related to the shape of the distribution,

and R is a uniform random number from [0, 1].

Then, with a probability of 2/3, the choice phase starts.

During the phase, the agent receives a signal meaning that it

is in that phase and a constant value (CV ) which is given to

each input neuron as an input pattern. The constant value is

expected to be used for self-reference of a memory. One out-

put from the agent in the range [-1, 1] will be interpreted as an

intention to decline the trial when it is more than 1/3. In this

case, the agent receives a small reward (0.3), Otherwise if the

value equals to or is more than 1/3, it will be interpreted as

an intention to take the test. On the other hand, with a prob-

ability of 1/3, the choice phase is skipped as a compulsory

condition.

In the test phase, the agent receives all patterns one by

one in random order, and an output ranged in [-1, 1] is in-

terpreted as a response for each pattern. Specifically, when

the response goes over 1/3 for the first time, the correspond-

ing input pattern will be interpreted as the selection of the

agent and the task ends. If it matches the target pattern pre-

sented in the study phase, the agent is rewarded with a large

reward (1.0). Otherwise, if it does not match the target or all

responses do not go over the value of 1/3, it is rewarded with

nothing.

In addition, we use an unsolvable condition, in which

agents do not receive one of the 5 patterns but receive a dis-

tractor pattern 00000 in the study phase. In this condition,

they receive the large reward (1.0) only if it selects the de-

cline option. We expect this addition accelerates the evolu-

tion of the ability to select the option.

3 MODEL
3.1 Neural network

The neural network of each agent is composed of sev-

eral standard neurons including 7 input and 2 output neurons,

and modulatory neurons (described in the next subsection) as

shown in Fig. 2. Among 7 inputs, one input neuron gets a

signal indicating whether it is in the choice phase (1) or not

(0). Another input neuron gets a bias that is always 1. Each

input of the other 5 neurons gets one of 5 digits of an input

pattern, respectively.

The topology of the network evolves while keeping the

number of neurons not more than 16, including standard

and modulatory neurons, but excluding input neurons. Each

value of all neurons in all phases is slightly modified by

adding a suitable amount of Gaussian noise (input neurons:

μ = 0.0 and σ = 0.1, other neurons: μ = 0.0 and σ = 0.0001).

The reason for adding the noise is to prevent evolution of

agents that are not robust. We regard the lack of the robust-

ness as the cause of the failure of the previous study in which

the evolved agents met C1 but not C2 [7]. The network is in-

putted the same patterns sequentially for 4 times in the choice

phase and 3 times in the other phases. Repetition of input is

essential when the evolved neural networks have recurrent

connections.

Fig. 2: Inputs and outputs of a neural network.

3.2 Neuromodulation
The neural network contains modulatory neurons in ad-

dition to standard neurons. Modulatory neurons affect the

learning rate of the connection weights of target neurons and

dynamically change it as shown in Fig. 3. In particular, the

output of the modulatory neuron mi modulates the learning

rate of the update rule of the connection weight by using it as

a modulatory signal instead of directly affecting an activation

signal ai. They are computed by Eqs. 2 and 3.
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ai =
∑

j∈Std

wji · oj , (2)

mi =
∑

j∈Mod

wji · oj , (3)

where wji is a connection weight from a presynaptic neuron

j to a postsynaptic neuron i. Std and Mod are the sets of

standard and modulatory neurons connected to the neuron i,
respectively. oj is an output of the neuron j and is computed

as oj = tanh (aj). The connection weight from a neuron

j to a neuron i is updated by Eq. 4, which is based on an

extension of the Hebb’s rule called Extended Hebbian rule

[9].

Δwji = tanh (mi) · η · (Aojoi + Boj + Coi + D), (4)

where oj and oi are the outputs of a presynaptic neuron j and

a postsynaptic neuron i, respectively. η, A, B, C and D are

also genetic parameters. Thus, the update rule can represent

various types of synaptic updating via the evolution of these

parameters.

Fig. 3: The overview of the neuromodulation.

3.3 Evolutionary algorithm
We use a variant of a genetic algorithm. The setting of the

algorithm is basically the same as the one proposed in [5].

Each agent has a matrix of real-valued connection weights

(one axis corresponds to presynaptic neurons while the other

to postsynaptic neurons) and the type of each neuron (stan-

dard or modulatory) for the decision of the structure, and five

parameters (η,A,B,C,D) for the update rule Eq. 4, as a

genome. Each connection weight wij and η are ranged in

[-1, 1] while A, . . . , B in [-100, 100]. These parameters in

genotype are converted to each weight wji in the phenotype

by Eq. 5 and A, . . . , B in the phenotype by Eq. 6 except for

η.

wji =

{
0 (|w3

ji| < 0.1)

10 · w3
ji (otherwise),

(5)

p =

{
0 (|p3| < 0.1)

p3 (otherwise),
(6)

where p ∈ {A,B,C,D}. The total score of each agent ob-

tained by performing the task of each is defined as its fit-

ness. The genetic operators are conducted as follows. Indi-

viduals are stored in an array, and are divided into consecu-

tive segments of size 5 (with random segmentation offset at

each generation). The best individual of each segment be-

comes a parent, and generates 5 children for its segment by

repeating crossover with a probability of 0.1 or copying itself

otherwise. When crossover happens, a partner individual is

randomly selected from the all individuals in the population.

Random integers r and c are selected from [1, N ], and two

matrices are generated by exchanging the sub matrices of the

parents that are composed by i, j elements with i and j less

than or equal to r and c, respectively. A uniform crossover is

performed on the parameters for the plasticity rule. Then, as

a mutation operator, with a probability of 0.1, Gaussian noise

(μ = 0.0, σ = 0.3) is added to each of connection weights and

the parameters for the plasticity rule except η, while Gaus-

sian noise (μ = 0.0, σ = 3.0) is added to η. Finally, insertion,

deletion and duplication of each neuron are independently

performed with probabilities of 0.04, 0.06 and 0.02, respec-

tively. When insertion happens, the weight of the added neu-

ron is randomly set in the range [-1, 1] and the type of the

neuron (standard or regulatory) is randomly set. These pro-

cesses constitute a generation and are repeated G times.

4 EXPERIMENTAL AND ANALYSES
We performed 10 evolutionary trials using the parameters:

N = 300, G = 1000, λ = 0.7 and CV = 0.25. During the first

100 generations, the agents have to jump to the test phase by

skipping the choice phase every time. This setting is meant to

guide the evolution in the initial stage. In subsequent genera-

tions, the tasks with the unsolvable condition were performed

U = 50 times randomly among T = 300 times of task execu-

tion. The neural network of each agent was initialized by

setting random values within corresponding possible ranges

every when a task started.

We successfully found neural networks by analysis that

satisfy C2 in 1 trial among 10 trials. Fig. 4 shows the be-

havior of the evolved agent at each delay time in the delay

phase. This individual has the accuracy of the selection con-

dition which is higher than that in forcing condition. We can

also observe the increase in the avoidance rate with the in-

crease in the delay. This result was reasonable if the agent

has a metamemory function, and was also observed in the

behavior of the monkey in the Hampton’s experiment.

Table 1 shows the average values of accuracy with a time

delay of 40 in forced tests, chosen tests, and declined tests

(assuming that they had taken the test despite declining). The

latter two are shown with the probabilities of taking and de-

clining in parentheses, respectively. There is a certain differ-

ence in accuracy between forced and chosen tests, and be-

tween chosen and declined tests, independent of input pat-

terns. This reveals that the agent tended to avoid the trials
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Fig. 4: The behavior of the evolved agent for each delay time.

which it could not answer correctly. The behavior of this

agent satisfies C1 because the behavior was not simply based

on the response for particular input stimuli configurations.

Table 1: Accuracy for each input pattern in each case

(delay = 40).

Input patterns
Accuracy

in forced tests

Accuracy

in chosen tests

(probability

of taking)

Accuracy

in declined tests

(probability

of declining)

00001 0.361 0.835 (0.270) 0.175 (0.730)

00010 0.354 0.803 (0.266) 0.216 (0.734)

00100 0.340 0.764 (0.240) 0.205 (0.760)

01000 0.361 0.819 (0.258) 0.183 (0.742)

10000 0.347 0.816 (0.272) 0.206 (0.728)

We analyzed how the network had solved the metamem-

ory task by observing temporal changes in neuronal activity

and connection weights in the network. Fig. 5 shows the

network which was analyzed above. As shown in the yellow

area of Fig. 5, we found that the networks had a second-order

modulator structure in which two modulatory neurons modu-

lated some connections from the standard neurons to another

modulatory neuron. This structure played an important role

in memorizing a received pattern, declining the test and an-

swering the test.

Fig. 6a shows the mechanism of memorizing a received

pattern. The network reflects and keeps a structure of a tar-

get pattern which it received in the study phase. This abil-

ity is made by two modulatory neurons maximally strength-

ening/weakening each connection weight between the corre-

sponding input neuron and a modulatory neuron (hereinafter

referred to as core modulatory neuron) by outputting modu-

latory signals. During the delay phase, the structure of the

memorized pattern is probably protected because the learning

of the connection weights is impeded by the absolute value

of the sum of the modulatory signals becomes a small value.

Fig. 5: The structure of the evolved neural network. The

width of each line represents the weight of a connection.

However, the absolute value becomes larger than the small

value if the other two modulatory neurons are disturbed by

much noise. In this case, the learning is promoted, which can

make the agent forget the memorized pattern.

Fig. 6b shows the mechanism of declining the test. The

core modulatory neuron can manage the behaviors of declin-

ing and answering by its activity state. It judges the presence

of the memory of the presented pattern by the sign of the sum

of the inputs coming through each connection (each weight

of which should reflect the presented pattern) between the

input neurons and the core modulatory neuron. If and only

if the agent forgets the memorized pattern, the core modula-

tory neuron receives the negative sum of the inputs and ac-

tivates negatively in the choice phase. As a result, the core

modulatory neuron changes some connection weights and the

declining neuron activates positively. Thus, the network suc-

cessfully declines the test. We also found that the mechanism

of pattern selection in the test phase was also based on the

monitoring of memory state by the core modulatory neuron.

Thus, our experiments indicate that, in conclusion, that

these networks can work correctly based on self-reference,

in other words, they satisfy C2.

5 CONCLUSION
This paper reported on the results of the evolution of

metamemory based on the self-reference, and the analysis

of its mechanism. We used the criteria (C1 and C2) which

were previously defined for clarifying how to exclude the so-

lutions that had been criticized in the discussion on the exper-

iments based on the escape response paradigm dealing with

metacognition in non-human animals.

We performed evolutionary experiments, and found an

agent which met C2. We investigated the evolved neural net-

work of the agent by analyzing its behavior, structure and

neural dynamics.

We found that the agent showed the behavior like a mon-

key which was claimed to have the ability of metamemory in

Hampton’s experiment, and that the behavior is not a reflex
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(a) The mechanism of memorizing and keeping a target pattern in the study phase. 1) Learning of connection weights is promoted because the

modulatory signal from mod 0 to mod 2 and that from mod 1 to mod 2 do not cancel each other out. 2) As a result, some connections reflect a

structure of an input pattern. 3) Thereafter, the modulatory signals cancel each other out and learning is prevented. In other words, the reflected

information is protected.

(b) The mechanism of declining the test in the choice phase. 1) If the connections in which an input pattern is memorized change greatly,

mod 2 (core modulatory neuron) receives the inputs in which the sum is negative from bit 0, ..., bit 4 and c p (where c p acts as a bias in order

to judge whether the agent forgets or not). 2) As a result, mod 2 activates negatively, and 3) the std 0 (the declining neuron) is modulated by

the positive signal from mod 2. 4) Therefore, the connections which connect to std 0 change positively, and 5) std 0 activates positively and

the network declines the test.

Fig. 6: The mechanism by which the network makes memorizing and keeping a target pattern (00001), and declining the test. A

red arrow represents a modulation. Each the event occurs in numerical order.

behavior for particular input stimuli configurations.

Furthermore, we observed temporal changes in the state

of the network. We found that the network had a structure

in which two modulatory neurons modulated some connec-

tions from the standard neurons to another modulatory neu-

ron. This structure played an important role in memory and

metamemory ability, which is as follows: In the study phase,

the network reflected and kept the structure of the received

pattern in each connection weight between the correspond-

ing input neuron and the modulatory neuron by the effect

of a pair of modulatory neurons. Moreover, the modulatory

neuron modulated the network circuit based on a monitoring

result of memory state in the choice phase. The modulation

of the network allowed the network to appropriately decline

or answer the test. In other words, the mechanism was based

on self-reference.

We believe that our study contributes to the understand-

ing of human metamemory and realization of artificial con-

sciousness.
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